INTRAMOLECULAR CYCLIZATION OF DIAZOKETONES: NEW STEPWISE

SYNTHESIS OF SEMIBULLVALENE
M. Rull, F. Serratosa* and J. Vilarrasa

Departamento de Química Orgánica, Facultad de Ciencias de la Universidad de Zaragaza, and Departamento de Química Orgánica, Facultad de Quími ca de la Universidad de Barcelona Barcelona-14. Spain
(Received in UK 19 October 1977; accepted for publication 27 October 1977)
All the reported syntheses of semibullvalene (1), except the more recent one by Malherbe ${ }^{1}$, involve some skeletal rearrangement of a cyclic key intermediate ${ }^{2}$. However, pertinent structural analysis and subsequent antithetic manipulations show that semibullvalene can be synthesized straightforward from either one of the two lactones 5 or 6 .

The present communication describes a rational synthesis of semibullvalene, starting from the readily available lactone 5^{3}, that proceeds strictly in the opposite direction to the one shown in Scheme 1.

SCHEME 1

Lactone 5 was allowed to react with n-butylamine at $80-90$ ㅇ, for 6 h , to give cis- N -butyl-(2-hydro-xycyclopent-4-en-1-yl)acetamide ${ }^{4}$, m.p. 72-39, in 70% yield, and the hydroxy group was then protected as the tosyl derivative (m.p. 78-9\%; 66% yield). Nitrosation with nitrogen dioxide, in methylene dichloride at $\mathbf{- 2 0}$, afforded the N-nitroso derivative in quantitative yield, which was cleaved with potassium hydroxide in THF-water, at -20-5ㅇ, to give cis-(2-tosyloxycyclopent-4-en-1-yl)acetic acid (4, OR = 2-OTs), m.p. 111-2ㅇ(dec), in 66% yield.

The crude diazoketone 3 ($O R=2-O T$ s) -prepared from the acid 4 via acid chloride- was catalytically decomposed by copper acetylacetonato in a boiling mixture of hexane and benzene (6:1), to give, in 54% yield (from the acid), b-endo-tosyloxytricyclo [3.3.0.0 $\left.0^{2,8}\right]$ octan-3-one (2, OR = 6-endo-OTs), m.p. 97-80 $\left(M^{+}=292\right)$. Treatment with sodium acetate in acetic acid at 1200 , for $2 h$, gave 6-endoacetoxytricyclo $\left[3.3 .0 .0^{2,8}\right]$ octan-3-one ($2, O R=6$-endo-OAc) as an oily product (100% yield), which has been already transformed to semibullvalene in a three-step sequence ${ }^{1}$.

It is worth noting that acetolysis of the tosyloxy derivative 2 ($O R=6$-endo- $O T$ s) takes place readily with retention of configuration ${ }^{5}$. This behovior suggests some sort of electronic assistance (from the cyclopropane ring) which shields the exo side and directs the nucleophile to the sterically more hindered endo side; a non-classical trishomocyclopropenyl cation, such as 7 , may be postulated as intermediate ${ }^{6}$.

References and notes

1. R. Malherbe, Helv. Chim. Acta, 56, 2845 (1973).
2. H.E. Zimmerman and G.L. Grunewald, J. Am. Chem. Soc., 88, 183 (1966); H.E. Zimmerman and H. Iwanura, ibid., 90, 4763 (1968); H.E. Zimmerman, R.W. Binkley, R.S. Given, G.L. Grumewald, and M.A. Sherwin, ibid., 91, 3316 (1969); J. Meinwald and D. Schmidt, ibid., 91, 5877 (1969); H.E. Zimmerman, J.D. Robbins, and J.S. Schantl, ibid., 91, 5878 (1969): L.A. Paquette, ibid., 92, 5765 (1970); R. Askani, Tetrahedron Letters, 3349 (1970); R.M. Moriarty, Ch.-L. Yeh, and N. Ishibi, J. Am. Chem. Soc., 93, 3085 (1971); D.R. James, G.H. Birnbery, and L.A. Paquette, ibid., 96, 7454 (1974).
3. E.J. Corey, Z. Arnold, and J. Hutton, Tetrahedron Letters, 307 (1970); P.A. Grieco, J. Org. Chem., 37. 2363 (1972); Prostaglandin Intermediates "synton 148", Dynachim (France).
4. All the reported compounds gave satisfactory elemental analyses and/or spectral data.
5. The endo configuration was assigned by analogy with the n.m.r. spectrum of the tosyloxy derivative and by double resonance experiments, as well as by comparison with the data discussed in ref. 1 and $6 c$.
6. a) S. Winstein and J. Sonnenberg, J. Am. Chem. Soc., 83, 3235 and 3244 (1961); b) H. Tanida, Accounts Chem. Res, 1, 239 (1968); c) J.S. Haywood-Farmer and R.E. Pincock, J. Am. Chem. Soc., 91, 3020 (1969).
